Copied to
clipboard

G = D28.33C23order 448 = 26·7

14th non-split extension by D28 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.38C24, D28.33C23, 2+ 1+44D7, Dic14.33C23, (C7×D4).37D4, C76(D4○SD16), C7⋊C8.17C23, (C7×Q8).37D4, D4⋊D721C22, C4○D4.16D14, C28.270(C2×D4), Q8⋊D722C22, C4.38(C23×D7), (C2×D4).118D14, D4.8D149C2, C4○D2811C22, D4.19(C7⋊D4), Q8.Dic711C2, D4.D721C22, Q8.19(C7⋊D4), D4.26(C22×D7), C7⋊Q1618C22, (C7×D4).26C23, D4.D1412C2, D4.10D149C2, D4.9D1411C2, (C7×Q8).26C23, Q8.26(C22×D7), (C2×C28).119C23, C14.172(C22×D4), C4.Dic717C22, (C7×2+ 1+4)⋊3C2, (C2×Dic14)⋊43C22, (D4×C14).169C22, (C2×C7⋊C8)⋊25C22, C4.76(C2×C7⋊D4), (C2×D4.D7)⋊32C2, (C2×C14).86(C2×D4), C22.7(C2×C7⋊D4), C2.45(C22×C7⋊D4), (C7×C4○D4).29C22, (C2×C4).103(C22×D7), SmallGroup(448,1289)

Series: Derived Chief Lower central Upper central

C1C28 — D28.33C23
C1C7C14C28D28C4○D28D4.10D14 — D28.33C23
C7C14C28 — D28.33C23
C1C2C4○D42+ 1+4

Generators and relations for D28.33C23
 G = < a,b,c,d,e | a28=b2=1, c2=d2=e2=a14, bab=a-1, ac=ca, ad=da, eae-1=a15, bc=cb, bd=db, ebe-1=a7b, dcd-1=a14c, ce=ec, de=ed >

Subgroups: 980 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4○D4, Dic7, C28, C28, C28, D14, C2×C14, C2×C14, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C7⋊C8, C7⋊C8, Dic14, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×C14, D4○SD16, C2×C7⋊C8, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×Dic14, C4○D28, D42D7, Q8×D7, D4×C14, D4×C14, C7×C4○D4, C7×C4○D4, C7×C4○D4, D4.D14, C2×D4.D7, Q8.Dic7, D4.8D14, D4.9D14, D4.10D14, C7×2+ 1+4, D28.33C23
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C7⋊D4, C22×D7, D4○SD16, C2×C7⋊D4, C23×D7, C22×C7⋊D4, D28.33C23

Smallest permutation representation of D28.33C23
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 77)(2 76)(3 75)(4 74)(5 73)(6 72)(7 71)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 63)(16 62)(17 61)(18 60)(19 59)(20 58)(21 57)(22 84)(23 83)(24 82)(25 81)(26 80)(27 79)(28 78)(29 98)(30 97)(31 96)(32 95)(33 94)(34 93)(35 92)(36 91)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 112)(44 111)(45 110)(46 109)(47 108)(48 107)(49 106)(50 105)(51 104)(52 103)(53 102)(54 101)(55 100)(56 99)
(1 39 15 53)(2 40 16 54)(3 41 17 55)(4 42 18 56)(5 43 19 29)(6 44 20 30)(7 45 21 31)(8 46 22 32)(9 47 23 33)(10 48 24 34)(11 49 25 35)(12 50 26 36)(13 51 27 37)(14 52 28 38)(57 96 71 110)(58 97 72 111)(59 98 73 112)(60 99 74 85)(61 100 75 86)(62 101 76 87)(63 102 77 88)(64 103 78 89)(65 104 79 90)(66 105 80 91)(67 106 81 92)(68 107 82 93)(69 108 83 94)(70 109 84 95)
(1 46 15 32)(2 47 16 33)(3 48 17 34)(4 49 18 35)(5 50 19 36)(6 51 20 37)(7 52 21 38)(8 53 22 39)(9 54 23 40)(10 55 24 41)(11 56 25 42)(12 29 26 43)(13 30 27 44)(14 31 28 45)(57 89 71 103)(58 90 72 104)(59 91 73 105)(60 92 74 106)(61 93 75 107)(62 94 76 108)(63 95 77 109)(64 96 78 110)(65 97 79 111)(66 98 80 112)(67 99 81 85)(68 100 82 86)(69 101 83 87)(70 102 84 88)
(1 53 15 39)(2 40 16 54)(3 55 17 41)(4 42 18 56)(5 29 19 43)(6 44 20 30)(7 31 21 45)(8 46 22 32)(9 33 23 47)(10 48 24 34)(11 35 25 49)(12 50 26 36)(13 37 27 51)(14 52 28 38)(57 103 71 89)(58 90 72 104)(59 105 73 91)(60 92 74 106)(61 107 75 93)(62 94 76 108)(63 109 77 95)(64 96 78 110)(65 111 79 97)(66 98 80 112)(67 85 81 99)(68 100 82 86)(69 87 83 101)(70 102 84 88)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,77)(2,76)(3,75)(4,74)(5,73)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,60)(19,59)(20,58)(21,57)(22,84)(23,83)(24,82)(25,81)(26,80)(27,79)(28,78)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99), (1,39,15,53)(2,40,16,54)(3,41,17,55)(4,42,18,56)(5,43,19,29)(6,44,20,30)(7,45,21,31)(8,46,22,32)(9,47,23,33)(10,48,24,34)(11,49,25,35)(12,50,26,36)(13,51,27,37)(14,52,28,38)(57,96,71,110)(58,97,72,111)(59,98,73,112)(60,99,74,85)(61,100,75,86)(62,101,76,87)(63,102,77,88)(64,103,78,89)(65,104,79,90)(66,105,80,91)(67,106,81,92)(68,107,82,93)(69,108,83,94)(70,109,84,95), (1,46,15,32)(2,47,16,33)(3,48,17,34)(4,49,18,35)(5,50,19,36)(6,51,20,37)(7,52,21,38)(8,53,22,39)(9,54,23,40)(10,55,24,41)(11,56,25,42)(12,29,26,43)(13,30,27,44)(14,31,28,45)(57,89,71,103)(58,90,72,104)(59,91,73,105)(60,92,74,106)(61,93,75,107)(62,94,76,108)(63,95,77,109)(64,96,78,110)(65,97,79,111)(66,98,80,112)(67,99,81,85)(68,100,82,86)(69,101,83,87)(70,102,84,88), (1,53,15,39)(2,40,16,54)(3,55,17,41)(4,42,18,56)(5,29,19,43)(6,44,20,30)(7,31,21,45)(8,46,22,32)(9,33,23,47)(10,48,24,34)(11,35,25,49)(12,50,26,36)(13,37,27,51)(14,52,28,38)(57,103,71,89)(58,90,72,104)(59,105,73,91)(60,92,74,106)(61,107,75,93)(62,94,76,108)(63,109,77,95)(64,96,78,110)(65,111,79,97)(66,98,80,112)(67,85,81,99)(68,100,82,86)(69,87,83,101)(70,102,84,88)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,77)(2,76)(3,75)(4,74)(5,73)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,60)(19,59)(20,58)(21,57)(22,84)(23,83)(24,82)(25,81)(26,80)(27,79)(28,78)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99), (1,39,15,53)(2,40,16,54)(3,41,17,55)(4,42,18,56)(5,43,19,29)(6,44,20,30)(7,45,21,31)(8,46,22,32)(9,47,23,33)(10,48,24,34)(11,49,25,35)(12,50,26,36)(13,51,27,37)(14,52,28,38)(57,96,71,110)(58,97,72,111)(59,98,73,112)(60,99,74,85)(61,100,75,86)(62,101,76,87)(63,102,77,88)(64,103,78,89)(65,104,79,90)(66,105,80,91)(67,106,81,92)(68,107,82,93)(69,108,83,94)(70,109,84,95), (1,46,15,32)(2,47,16,33)(3,48,17,34)(4,49,18,35)(5,50,19,36)(6,51,20,37)(7,52,21,38)(8,53,22,39)(9,54,23,40)(10,55,24,41)(11,56,25,42)(12,29,26,43)(13,30,27,44)(14,31,28,45)(57,89,71,103)(58,90,72,104)(59,91,73,105)(60,92,74,106)(61,93,75,107)(62,94,76,108)(63,95,77,109)(64,96,78,110)(65,97,79,111)(66,98,80,112)(67,99,81,85)(68,100,82,86)(69,101,83,87)(70,102,84,88), (1,53,15,39)(2,40,16,54)(3,55,17,41)(4,42,18,56)(5,29,19,43)(6,44,20,30)(7,31,21,45)(8,46,22,32)(9,33,23,47)(10,48,24,34)(11,35,25,49)(12,50,26,36)(13,37,27,51)(14,52,28,38)(57,103,71,89)(58,90,72,104)(59,105,73,91)(60,92,74,106)(61,107,75,93)(62,94,76,108)(63,109,77,95)(64,96,78,110)(65,111,79,97)(66,98,80,112)(67,85,81,99)(68,100,82,86)(69,87,83,101)(70,102,84,88) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,77),(2,76),(3,75),(4,74),(5,73),(6,72),(7,71),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,63),(16,62),(17,61),(18,60),(19,59),(20,58),(21,57),(22,84),(23,83),(24,82),(25,81),(26,80),(27,79),(28,78),(29,98),(30,97),(31,96),(32,95),(33,94),(34,93),(35,92),(36,91),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,112),(44,111),(45,110),(46,109),(47,108),(48,107),(49,106),(50,105),(51,104),(52,103),(53,102),(54,101),(55,100),(56,99)], [(1,39,15,53),(2,40,16,54),(3,41,17,55),(4,42,18,56),(5,43,19,29),(6,44,20,30),(7,45,21,31),(8,46,22,32),(9,47,23,33),(10,48,24,34),(11,49,25,35),(12,50,26,36),(13,51,27,37),(14,52,28,38),(57,96,71,110),(58,97,72,111),(59,98,73,112),(60,99,74,85),(61,100,75,86),(62,101,76,87),(63,102,77,88),(64,103,78,89),(65,104,79,90),(66,105,80,91),(67,106,81,92),(68,107,82,93),(69,108,83,94),(70,109,84,95)], [(1,46,15,32),(2,47,16,33),(3,48,17,34),(4,49,18,35),(5,50,19,36),(6,51,20,37),(7,52,21,38),(8,53,22,39),(9,54,23,40),(10,55,24,41),(11,56,25,42),(12,29,26,43),(13,30,27,44),(14,31,28,45),(57,89,71,103),(58,90,72,104),(59,91,73,105),(60,92,74,106),(61,93,75,107),(62,94,76,108),(63,95,77,109),(64,96,78,110),(65,97,79,111),(66,98,80,112),(67,99,81,85),(68,100,82,86),(69,101,83,87),(70,102,84,88)], [(1,53,15,39),(2,40,16,54),(3,55,17,41),(4,42,18,56),(5,29,19,43),(6,44,20,30),(7,31,21,45),(8,46,22,32),(9,33,23,47),(10,48,24,34),(11,35,25,49),(12,50,26,36),(13,37,27,51),(14,52,28,38),(57,103,71,89),(58,90,72,104),(59,105,73,91),(60,92,74,106),(61,107,75,93),(62,94,76,108),(63,109,77,95),(64,96,78,110),(65,111,79,97),(66,98,80,112),(67,85,81,99),(68,100,82,86),(69,87,83,101),(70,102,84,88)]])

73 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D···14AD28A···28R
order122222222444444447778888814141414···1428···28
size11222444282222428282822214142828282224···44···4

73 irreducible representations

dim11111111222222248
type+++++++++++++-
imageC1C2C2C2C2C2C2C2D4D4D7D14D14C7⋊D4C7⋊D4D4○SD16D28.33C23
kernelD28.33C23D4.D14C2×D4.D7Q8.Dic7D4.8D14D4.9D14D4.10D14C7×2+ 1+4C7×D4C7×Q82+ 1+4C2×D4C4○D4D4Q8C7C1
# reps1331331131391218623

Matrix representation of D28.33C23 in GL6(𝔽113)

2800000
81090000
00579000
001025600
00288911277
007671441
,
8430000
59290000
008417022
0024924726
006562016
0046905150
,
100000
010000
001120720
0045254439
0091010
00293910288
,
11200000
01120000
0038103417
0045449037
00288911277
0049644132
,
100000
010000
0010410
00104259039
002201120
00103394188

G:=sub<GL(6,GF(113))| [28,8,0,0,0,0,0,109,0,0,0,0,0,0,57,102,28,76,0,0,90,56,89,71,0,0,0,0,112,44,0,0,0,0,77,1],[84,59,0,0,0,0,3,29,0,0,0,0,0,0,84,24,65,46,0,0,17,92,62,90,0,0,0,47,0,51,0,0,22,26,16,50],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,45,91,29,0,0,0,25,0,39,0,0,72,44,1,102,0,0,0,39,0,88],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,38,45,28,49,0,0,103,44,89,64,0,0,41,90,112,41,0,0,7,37,77,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,104,22,103,0,0,0,25,0,39,0,0,41,90,112,41,0,0,0,39,0,88] >;

D28.33C23 in GAP, Magma, Sage, TeX

D_{28}._{33}C_2^3
% in TeX

G:=Group("D28.33C2^3");
// GroupNames label

G:=SmallGroup(448,1289);
// by ID

G=gap.SmallGroup(448,1289);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,387,184,675,136,1684,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^28=b^2=1,c^2=d^2=e^2=a^14,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^15,b*c=c*b,b*d=d*b,e*b*e^-1=a^7*b,d*c*d^-1=a^14*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
×
𝔽